This version is still in development and is not considered stable yet. For the latest stable version, please use spring-cloud-stream 4.1.4!spring-doc.cn

Mechanics

To better understand the mechanics and the necessity behind content-type negotiation, we take a look at a very simple use case by using the following message handler as an example:spring-doc.cn

public Function<Person, String> personFunction {..}
For simplicity, we assume that this is the only handler function in the application (we assume there is no internal pipeline).

The handler shown in the preceding example expects a Person object as an argument and produces a String type as an output. In order for the framework to succeed in passing the incoming Message as an argument to this handler, it has to somehow transform the payload of the Message type from the wire format to a Person type. In other words, the framework must locate and apply the appropriate MessageConverter. To accomplish that, the framework needs some instructions from the user. One of these instructions is already provided by the signature of the handler method itself (Person type). Consequently, in theory, that should be (and, in some cases, is) enough. However, for the majority of use cases, in order to select the appropriate MessageConverter, the framework needs an additional piece of information. That missing piece is contentType.spring-doc.cn

Spring Cloud Stream provides three mechanisms to define contentType (in order of precedence):spring-doc.cn

  1. HEADER: The contentType can be communicated through the Message itself. By providing a contentType header, you declare the content type to use to locate and apply the appropriate MessageConverter.spring-doc.cn

  2. BINDING: The contentType can be set per destination binding by setting the spring.cloud.stream.bindings.input.content-type property.spring-doc.cn

    The input segment in the property name corresponds to the actual name of the destination (which is “input” in our case). This approach lets you declare, on a per-binding basis, the content type to use to locate and apply the appropriate MessageConverter.
  3. DEFAULT: If contentType is not present in the Message header or the binding, the default application/json content type is used to locate and apply the appropriate MessageConverter.spring-doc.cn

As mentioned earlier, the preceding list also demonstrates the order of precedence in case of a tie. For example, a header-provided content type takes precedence over any other content type. The same applies for a content type set on a per-binding basis, which essentially lets you override the default content type. However, it also provides a sensible default (which was determined from community feedback).spring-doc.cn

Another reason for making application/json the default stems from the interoperability requirements driven by distributed microservices architectures, where producer and consumer not only run in different JVMs but can also run on different non-JVM platforms.spring-doc.cn

When the non-void handler method returns, if the return value is already a Message, that Message becomes the payload. However, when the return value is not a Message, the new Message is constructed with the return value as the payload while inheriting headers from the input Message minus the headers defined or filtered by SpringIntegrationProperties.messageHandlerNotPropagatedHeaders. By default, there is only one header set there: contentType. This means that the new Message does not have contentType header set, thus ensuring that the contentType can evolve. You can always opt out of returning a Message from the handler method where you can inject any header you wish.spring-doc.cn

If there is an internal pipeline, the Message is sent to the next handler by going through the same process of conversion. However, if there is no internal pipeline or you have reached the end of it, the Message is sent back to the output destination.spring-doc.cn

Content Type versus Argument Type

As mentioned earlier, for the framework to select the appropriate MessageConverter, it requires argument type and, optionally, content type information. The logic for selecting the appropriate MessageConverter resides with the argument resolvers (HandlerMethodArgumentResolvers), which trigger right before the invocation of the user-defined handler method (which is when the actual argument type is known to the framework). If the argument type does not match the type of the current payload, the framework delegates to the stack of the pre-configured MessageConverters to see if any one of them can convert the payload. As you can see, the Object fromMessage(Message<?> message, Class<?> targetClass); operation of the MessageConverter takes targetClass as one of its arguments. The framework also ensures that the provided Message always contains a contentType header. When no contentType header was already present, it injects either the per-binding contentType header or the default contentType header. The combination of contentType argument type is the mechanism by which framework determines if message can be converted to a target type. If no appropriate MessageConverter is found, an exception is thrown, which you can handle by adding a custom MessageConverter (see User-defined Message Converters).spring-doc.cn

But what if the payload type matches the target type declared by the handler method? In this case, there is nothing to convert, and the payload is passed unmodified. While this sounds pretty straightforward and logical, keep in mind handler methods that take a Message<?> or Object as an argument. By declaring the target type to be Object (which is an instanceof everything in Java), you essentially forfeit the conversion process.spring-doc.cn

Do not expect Message to be converted into some other type based only on the contentType. Remember that the contentType is complementary to the target type. If you wish, you can provide a hint, which MessageConverter may or may not take into consideration.

Message Converters

MessageConverters define two methods:spring-doc.cn

Object fromMessage(Message<?> message, Class<?> targetClass);

Message<?> toMessage(Object payload, @Nullable MessageHeaders headers);

It is important to understand the contract of these methods and their usage, specifically in the context of Spring Cloud Stream.spring-doc.cn

The fromMessage method converts an incoming Message to an argument type. The payload of the Message could be any type, and it is up to the actual implementation of the MessageConverter to support multiple types. For example, some JSON converter may support the payload type as byte[], String, and others. This is important when the application contains an internal pipeline (that is, input → handler1 → handler2 →. . . → output) and the output of the upstream handler results in a Message which may not be in the initial wire format.spring-doc.cn

However, the toMessage method has a more strict contract and must always convert Message to the wire format: byte[].spring-doc.cn

So, for all intents and purposes (and especially when implementing your own converter) you regard the two methods as having the following signatures:spring-doc.cn

Object fromMessage(Message<?> message, Class<?> targetClass);

Message<byte[]> toMessage(Object payload, @Nullable MessageHeaders headers);