Configuring and Running a Job
Configuring and Running a Job
In the domain section , the overall architecture design was discussed, using the following diagram as a guide:
While the Job
object may seem like a simple
container for steps, you must be aware of many configuration options.
Furthermore, you must consider many options about
how a Job
can be run and how its metadata can be
stored during that run. This chapter explains the various configuration
options and runtime concerns of a Job
.
Configuring a Job
There are multiple implementations of the Job
interface. However,
builders abstract away the difference in configuration.
The following example creates a footballJob
:
@Bean
public Job footballJob(JobRepository jobRepository) {
return new JobBuilder("footballJob", jobRepository)
.start(playerLoad())
.next(gameLoad())
.next(playerSummarization())
.build();
}
A Job
(and, typically, any Step
within it) requires a JobRepository
. The
configuration of the JobRepository
is handled through the Java Configuration
.
The preceding example illustrates a Job
that consists of three Step
instances. The job related
builders can also contain other elements that help with parallelization (Split
),
declarative flow control (Decision
), and externalization of flow definitions (Flow
).
There are multiple implementations of the Job
interface. However, the namespace abstracts away the differences in configuration. It has
only three required dependencies: a name, JobRepository
, and a list of Step
instances.
The following example creates a footballJob
:
<job id="footballJob">
<step id="playerload" parent="s1" next="gameLoad"/>
<step id="gameLoad" parent="s2" next="playerSummarization"/>
<step id="playerSummarization" parent="s3"/>
</job>
The examples here use a parent bean definition to create the steps.
See the section on step configuration
for more options when declaring specific step details inline. The XML namespace
defaults to referencing a repository with an ID of jobRepository
, which
is a sensible default. However, you can explicitly override it:
<job id="footballJob" job-repository="specialRepository">
<step id="playerload" parent="s1" next="gameLoad"/>
<step id="gameLoad" parent="s3" next="playerSummarization"/>
<step id="playerSummarization" parent="s3"/>
</job>
In addition to steps, a job configuration can contain other elements that help with
parallelization (<split>
), declarative flow control (<decision>
) and externalization
of flow definitions (<flow/>
).
Restartability
One key issue when executing a batch job concerns the behavior of a Job
when it is
restarted. The launching of a Job
is considered to be a “restart” if a JobExecution
already exists for the particular JobInstance
. Ideally, all jobs should be able to start
up where they left off, but there are scenarios where this is not possible.
In this scenario, it is entirely up to the developer to ensure that a new JobInstance
is created.
However, Spring Batch does provide some help. If a Job
should never be
restarted but should always be run as part of a new JobInstance
, you can set the
restartable property to false
.
The following example shows how to set the restartable
field to false
in XML:
<job id="footballJob" restartable="false">
...
</job>
The following example shows how to set the restartable
field to false
in Java:
@Bean
public Job footballJob(JobRepository jobRepository) {
return new JobBuilder("footballJob", jobRepository)
.preventRestart()
...
.build();
}
To phrase it another way, setting restartable
to false
means “this
Job
does not support being started again”. Restarting a Job
that is not
restartable causes a JobRestartException
to
be thrown.
The following Junit code causes the exception to be thrown:
Job job = new SimpleJob();
job.setRestartable(false);
JobParameters jobParameters = new JobParameters();
JobExecution firstExecution = jobRepository.createJobExecution(job, jobParameters);
jobRepository.saveOrUpdate(firstExecution);
try {
jobRepository.createJobExecution(job, jobParameters);
fail();
}
catch (JobRestartException e) {
// expected
}
The first attempt to create a
JobExecution
for a non-restartable
job causes no issues. However, the second
attempt throws a JobRestartException
.
Intercepting Job Execution
During the course of the execution of a
Job
, it may be useful to be notified of various
events in its lifecycle so that custom code can be run.
SimpleJob
allows for this by calling a
JobListener
at the appropriate time:
public interface JobExecutionListener {
void beforeJob(JobExecution jobExecution);
void afterJob(JobExecution jobExecution);
}
You can add JobListeners
to a SimpleJob
by setting listeners on the job.
The following example shows how to add a listener element to an XML job definition:
<job id="footballJob">
<step id="playerload" parent="s1" next="gameLoad"/>
<step id="gameLoad" parent="s2" next="playerSummarization"/>
<step id="playerSummarization" parent="s3"/>
<listeners>
<listener ref="sampleListener"/>
</listeners>
</job>
The following example shows how to add a listener method to a Java job definition:
@Bean
public Job footballJob(JobRepository jobRepository) {
return new JobBuilder("footballJob", jobRepository)
.listener(sampleListener())
...
.build();
}
Note that the afterJob
method is called regardless of the success or
failure of the Job
. If you need to determine success or failure, you can get that information
from the JobExecution
:
public void afterJob(JobExecution jobExecution){
if (jobExecution.getStatus() == BatchStatus.COMPLETED ) {
//job success
}
else if (jobExecution.getStatus() == BatchStatus.FAILED) {
//job failure
}
}
The annotations corresponding to this interface are:
-
@BeforeJob
-
@AfterJob
Inheriting from a Parent Job
If a group of Jobs share similar but not
identical configurations, it may help to define a “parent”
Job
from which the concrete
Job
instances can inherit properties. Similar to class
inheritance in Java, a “child” Job
combines
its elements and attributes with the parent’s.
In the following example, baseJob
is an abstract
Job
definition that defines only a list of
listeners. The Job
(job1
) is a concrete
definition that inherits the list of listeners from baseJob
and merges
it with its own list of listeners to produce a
Job
with two listeners and one
Step
(step1
).
<job id="baseJob" abstract="true">
<listeners>
<listener ref="listenerOne"/>
<listeners>
</job>
<job id="job1" parent="baseJob">
<step id="step1" parent="standaloneStep"/>
<listeners merge="true">
<listener ref="listenerTwo"/>
<listeners>
</job>
See the section on Inheriting from a Parent Step for more detailed information.
JobParametersValidator
A job declared in the XML namespace or using any subclass of
AbstractJob
can optionally declare a validator for the job parameters at
runtime. This is useful when, for instance, you need to assert that a job
is started with all its mandatory parameters. There is a
DefaultJobParametersValidator
that you can use to constrain combinations
of simple mandatory and optional parameters. For more complex
constraints, you can implement the interface yourself.
The configuration of a validator is supported through the XML namespace through a child element of the job, as the following example shows:
<job id="job1" parent="baseJob3">
<step id="step1" parent="standaloneStep"/>
<validator ref="parametersValidator"/>
</job>
You can specify the validator as a reference (as shown earlier) or as a nested bean
definition in the beans
namespace.
The configuration of a validator is supported through the Java builders:
@Bean
public Job job1(JobRepository jobRepository) {
return new JobBuilder("job1", jobRepository)
.validator(parametersValidator())
...
.build();
}
Java Configuration
Spring 3 brought the ability to configure applications with Java instead of XML. As of
Spring Batch 2.2.0, you can configure batch jobs by using the same Java configuration.
There are three components for the Java-based configuration: the @EnableBatchProcessing
annotation and two builders.
The @EnableBatchProcessing
annotation works similarly to the other @Enable*
annotations in the
Spring family. In this case, @EnableBatchProcessing
provides a base configuration for
building batch jobs. Within this base configuration, an instance of StepScope
and JobScope
are
created, in addition to a number of beans being made available to be autowired:
-
JobRepository
: a bean namedjobRepository
-
JobLauncher
: a bean namedjobLauncher
-
JobRegistry
: a bean namedjobRegistry
-
JobExplorer
: a bean namedjobExplorer
-
JobOperator
: a bean namedjobOperator
The default implementation provides the beans mentioned in the preceding list and requires a DataSource
and a PlatformTransactionManager
to be provided as beans within the context. The data source and transaction
manager are used by the JobRepository
and JobExplorer
instances. By default, the data source named dataSource
and the transaction manager named transactionManager
will be used. You can customize any of these beans by using
the attributes of the @EnableBatchProcessing
annotation. The following example shows how to provide a
custom data source and transaction manager:
@Configuration
@EnableBatchProcessing(dataSourceRef = "batchDataSource", transactionManagerRef = "batchTransactionManager")
public class MyJobConfiguration {
@Bean
public DataSource batchDataSource() {
return new EmbeddedDatabaseBuilder().setType(EmbeddedDatabaseType.HSQL)
.addScript("/org/springframework/batch/core/schema-hsqldb.sql")
.generateUniqueName(true).build();
}
@Bean
public JdbcTransactionManager batchTransactionManager(DataSource dataSource) {
return new JdbcTransactionManager(dataSource);
}
@Bean
public Job job(JobRepository jobRepository) {
return new JobBuilder("myJob", jobRepository)
//define job flow as needed
.build();
}
}
Only one configuration class needs to have the @EnableBatchProcessing annotation. Once
you have a class annotated with it, you have all of the configuration described earlier.
|
Starting from v5.0, an alternative, programmatic way of configuring base infrastrucutre beans
is provided through the DefaultBatchConfiguration
class. This class provides the same beans
provided by @EnableBatchProcessing
and can be used as a base class to configure batch jobs.
The following snippet is a typical example of how to use it:
@Configuration
class MyJobConfiguration extends DefaultBatchConfiguration {
@Bean
public Job job(JobRepository jobRepository) {
return new JobBuilder("job", jobRepository)
// define job flow as needed
.build();
}
}
The data source and transaction manager will be resolved from the application context and set on the job repository and job explorer. You can customize the configuration of any infrastructure bean by overriding the required setter. The following example shows how to customize the character encoding for instance:
@Configuration
class MyJobConfiguration extends DefaultBatchConfiguration {
@Bean
public Job job(JobRepository jobRepository) {
return new JobBuilder("job", jobRepository)
// define job flow as needed
.build();
}
@Override
protected Charset getCharset() {
return StandardCharsets.ISO_8859_1;
}
}
@EnableBatchProcessing should not be used with DefaultBatchConfiguration . You should
either use the declarative way of configuring Spring Batch through @EnableBatchProcessing ,
or use the programmatic way of extending DefaultBatchConfiguration , but not both ways at
the same time.
|
Configuring a JobRepository
When using @EnableBatchProcessing
, a JobRepository
is provided for you.
This section describes how to configure your own.
As described earlier, the JobRepository
is used for basic CRUD operations of the various persisted
domain objects within Spring Batch, such as JobExecution
and StepExecution
.
It is required by many of the major framework features, such as the JobLauncher
,
Job
, and Step
.
The batch namespace abstracts away many of the implementation details of the
JobRepository
implementations and their collaborators. However, there are still a few
configuration options available, as the following example shows:
<job-repository id="jobRepository"
data-source="dataSource"
transaction-manager="transactionManager"
isolation-level-for-create="SERIALIZABLE"
table-prefix="BATCH_"
max-varchar-length="1000"/>
Other than the id
, none of the configuration options listed earlier are required. If they are
not set, the defaults shown earlier are used.
The max-varchar-length
defaults to 2500
, which is the length of the long
VARCHAR
columns in the sample schema
scripts.
Other than the dataSource
and the transactionManager
, none of the configuration options listed earlier are required.
If they are not set, the defaults shown earlier
are used. The
max varchar
length defaults to 2500
, which is the
length of the long VARCHAR
columns in the
sample schema scripts
Transaction Configuration for the JobRepository
If the namespace or the provided FactoryBean
is used, transactional advice is
automatically created around the repository. This is to ensure that the batch metadata,
including state that is necessary for restarts after a failure, is persisted correctly.
The behavior of the framework is not well defined if the repository methods are not
transactional. The isolation level in the create*
method attributes is specified
separately to ensure that, when jobs are launched, if two processes try to launch
the same job at the same time, only one succeeds. The default isolation level for that
method is SERIALIZABLE
, which is quite aggressive. READ_COMMITTED
usually works equally
well. READ_UNCOMMITTED
is fine if two processes are not likely to collide in this
way. However, since a call to the create*
method is quite short, it is unlikely that
SERIALIZED
causes problems, as long as the database platform supports it. However, you
can override this setting.
The following example shows how to override the isolation level in XML:
<job-repository id="jobRepository"
isolation-level-for-create="REPEATABLE_READ" />
The following example shows how to override the isolation level in Java:
@Configuration
@EnableBatchProcessing(isolationLevelForCreate = "ISOLATION_REPEATABLE_READ")
public class MyJobConfiguration {
// job definition
}
If the namespace is not used, you must also configure the transactional behavior of the repository by using AOP.
The following example shows how to configure the transactional behavior of the repository in XML:
<aop:config>
<aop:advisor
pointcut="execution(* org.springframework.batch.core..*Repository+.*(..))"/>
<advice-ref="txAdvice" />
</aop:config>
<tx:advice id="txAdvice" transaction-manager="transactionManager">
<tx:attributes>
<tx:method name="*" />
</tx:attributes>
</tx:advice>
You can use the preceding fragment nearly as is, with almost no changes. Remember also to
include the appropriate namespace declarations and to make sure spring-tx
and spring-aop
(or the whole of Spring) are on the classpath.
The following example shows how to configure the transactional behavior of the repository in Java:
@Bean
public TransactionProxyFactoryBean baseProxy() {
TransactionProxyFactoryBean transactionProxyFactoryBean = new TransactionProxyFactoryBean();
Properties transactionAttributes = new Properties();
transactionAttributes.setProperty("*", "PROPAGATION_REQUIRED");
transactionProxyFactoryBean.setTransactionAttributes(transactionAttributes);
transactionProxyFactoryBean.setTarget(jobRepository());
transactionProxyFactoryBean.setTransactionManager(transactionManager());
return transactionProxyFactoryBean;
}
Changing the Table Prefix
Another modifiable property of the JobRepository
is the table prefix of the meta-data
tables. By default, they are all prefaced with BATCH_
. BATCH_JOB_EXECUTION
and
BATCH_STEP_EXECUTION
are two examples. However, there are potential reasons to modify this
prefix. If the schema names need to be prepended to the table names or if more than one
set of metadata tables is needed within the same schema, the table prefix needs to
be changed.
The following example shows how to change the table prefix in XML:
<job-repository id="jobRepository"
table-prefix="SYSTEM.TEST_" />
The following example shows how to change the table prefix in Java:
@Configuration
@EnableBatchProcessing(tablePrefix = "SYSTEM.TEST_")
public class MyJobConfiguration {
// job definition
}
Given the preceding changes, every query to the metadata tables is prefixed with
SYSTEM.TEST_
. BATCH_JOB_EXECUTION
is referred to as SYSTEM.TEST_JOB_EXECUTION
.
Only the table prefix is configurable. The table and column names are not. |
Non-standard Database Types in a Repository
If you use a database platform that is not in the list of supported platforms, you
may be able to use one of the supported types, if the SQL variant is close enough. To do
this, you can use the raw JobRepositoryFactoryBean
instead of the namespace shortcut and
use it to set the database type to the closest match.
The following example shows how to use JobRepositoryFactoryBean
to set the database type
to the closest match in XML:
<bean id="jobRepository" class="org...JobRepositoryFactoryBean">
<property name="databaseType" value="db2"/>
<property name="dataSource" ref="dataSource"/>
</bean>
The following example shows how to use JobRepositoryFactoryBean
to set the database type
to the closest match in Java:
@Bean
public JobRepository jobRepository() throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean();
factory.setDataSource(dataSource);
factory.setDatabaseType("db2");
factory.setTransactionManager(transactionManager);
return factory.getObject();
}
If the database type is not specified, the JobRepositoryFactoryBean
tries to
auto-detect the database type from the DataSource
.
The major differences between platforms are
mainly accounted for by the strategy for incrementing primary keys, so
it is often necessary to override the
incrementerFactory
as well (by using one of the standard
implementations from the Spring Framework).
If even that does not work or if you are not using an RDBMS, the
only option may be to implement the various Dao
interfaces that the SimpleJobRepository
depends
on and wire one up manually in the normal Spring way.
Configuring a JobLauncher
When you use @EnableBatchProcessing
, a JobRegistry
is provided for you.
This section describes how to configure your own.
The most basic implementation of the JobLauncher
interface is the TaskExecutorJobLauncher
.
Its only required dependency is a JobRepository
(needed to obtain an execution).
The following example shows a TaskExecutorJobLauncher
in XML:
<bean id="jobLauncher"
class="org.springframework.batch.core.launch.support.TaskExecutorJobLauncher">
<property name="jobRepository" ref="jobRepository" />
</bean>
The following example shows a TaskExecutorJobLauncher
in Java:
...
@Bean
public JobLauncher jobLauncher() throws Exception {
TaskExecutorJobLauncher jobLauncher = new TaskExecutorJobLauncher();
jobLauncher.setJobRepository(jobRepository);
jobLauncher.afterPropertiesSet();
return jobLauncher;
}
...
Once a JobExecution is obtained, it is passed to the
execute method of Job
, ultimately returning the JobExecution
to the caller, as
the following image shows:
The sequence is straightforward and works well when launched from a scheduler. However,
issues arise when trying to launch from an HTTP request. In this scenario, the launching
needs to be done asynchronously so that the TaskExecutorJobLauncher
returns immediately to its
caller. This is because it is not good practice to keep an HTTP request open for the
amount of time needed by long running processes (such as batch jobs). The following image shows
an example sequence:
You can configure the TaskExecutorJobLauncher
to allow for this scenario by configuring a
TaskExecutor
.
The following XML example configures a TaskExecutorJobLauncher
to return immediately:
<bean id="jobLauncher"
class="org.springframework.batch.core.launch.support.TaskExecutorJobLauncher">
<property name="jobRepository" ref="jobRepository" />
<property name="taskExecutor">
<bean class="org.springframework.core.task.SimpleAsyncTaskExecutor" />
</property>
</bean>
The following Java example configures a TaskExecutorJobLauncher
to return immediately:
@Bean
public JobLauncher jobLauncher() {
TaskExecutorJobLauncher jobLauncher = new TaskExecutorJobLauncher();
jobLauncher.setJobRepository(jobRepository());
jobLauncher.setTaskExecutor(new SimpleAsyncTaskExecutor());
jobLauncher.afterPropertiesSet();
return jobLauncher;
}
You can use any implementation of the spring TaskExecutor
interface to control how jobs are asynchronously
executed.
Running a Job
At a minimum, launching a batch job requires two things: the
Job
to be launched and a
JobLauncher
. Both can be contained within the same
context or different contexts. For example, if you launch jobs from the
command line, a new JVM is instantiated for each Job
. Thus, every
job has its own JobLauncher
. However, if
you run from within a web container that is within the scope of an
HttpRequest
, there is usually one
JobLauncher
(configured for asynchronous job
launching) that multiple requests invoke to launch their jobs.
Running Jobs from the Command Line
If you want to run your jobs from an enterprise
scheduler, the command line is the primary interface. This is because
most schedulers (with the exception of Quartz, unless using
NativeJob
) work directly with operating system
processes, primarily kicked off with shell scripts. There are many ways
to launch a Java process besides a shell script, such as Perl, Ruby, or
even build tools, such as Ant or Maven. However, because most people
are familiar with shell scripts, this example focuses on them.
The CommandLineJobRunner
Because the script launching the job must kick off a Java
Virtual Machine, there needs to be a class with a main
method to act
as the primary entry point. Spring Batch provides an implementation
that serves this purpose:
CommandLineJobRunner
. Note
that this is just one way to bootstrap your application. There are
many ways to launch a Java process, and this class should in no way be
viewed as definitive. The CommandLineJobRunner
performs four tasks:
-
Load the appropriate
ApplicationContext
. -
Parse command line arguments into
JobParameters
. -
Locate the appropriate job based on arguments.
-
Use the
JobLauncher
provided in the application context to launch the job.
All of these tasks are accomplished with only the arguments passed in. The following table describes the required arguments:
|
The location of the XML file that is used to
create an |
|
The name of the job to be run. |
These arguments must be passed in, with the path first and the name second. All arguments
after these are considered to be job parameters, are turned into a JobParameters
object,
and must be in the format of name=value
.
The following example shows a date passed as a job parameter to a job defined in XML:
<bash$ java CommandLineJobRunner endOfDayJob.xml endOfDay schedule.date=2007-05-05,java.time.LocalDate
The following example shows a date passed as a job parameter to a job defined in Java:
<bash$ java CommandLineJobRunner io.spring.EndOfDayJobConfiguration endOfDay schedule.date=2007-05-05,java.time.LocalDate
By default, the In the following example,
You can override this behavior by using a custom |
In most cases, you would want to use a manifest to declare your main
class in a jar. However,
for simplicity, the class was used directly. This example uses the EndOfDay
example from the The Domain Language of Batch. The first
argument is endOfDayJob.xml
, which is the Spring ApplicationContext that contains the
Job
. The second argument, endOfDay,
represents the job name. The final argument,
schedule.date=2007-05-05,java.time.LocalDate
, is converted into a JobParameter
object of type
java.time.LocalDate
.
The following example shows a sample configuration for endOfDay
in XML:
<job id="endOfDay">
<step id="step1" parent="simpleStep" />
</job>
<!-- Launcher details removed for clarity -->
<beans:bean id="jobLauncher"
class="org.springframework.batch.core.launch.support.TaskExecutorJobLauncher" />
In most cases, you would want to use a manifest to declare your main
class in a jar. However,
for simplicity, the class was used directly. This example uses the EndOfDay
example from the The Domain Language of Batch. The first
argument is io.spring.EndOfDayJobConfiguration
, which is the fully qualified class name
to the configuration class that contains the Job. The second argument, endOfDay
, represents
the job name. The final argument, schedule.date=2007-05-05,java.time.LocalDate
, is converted
into a JobParameter
object of type java.time.LocalDate
.
The following example shows a sample configuration for endOfDay
in Java:
@Configuration
@EnableBatchProcessing
public class EndOfDayJobConfiguration {
@Bean
public Job endOfDay(JobRepository jobRepository, Step step1) {
return new JobBuilder("endOfDay", jobRepository)
.start(step1)
.build();
}
@Bean
public Step step1(JobRepository jobRepository, PlatformTransactionManager transactionManager) {
return new StepBuilder("step1", jobRepository)
.tasklet((contribution, chunkContext) -> null, transactionManager)
.build();
}
}
The preceding example is overly simplistic, since there are many more requirements to a
run a batch job in Spring Batch in general, but it serves to show the two main
requirements of the CommandLineJobRunner
: Job
and JobLauncher
.
Exit Codes
When launching a batch job from the command-line, an enterprise
scheduler is often used. Most schedulers are fairly dumb and work only
at the process level. This means that they only know about some
operating system process (such as a shell script that they invoke).
In this scenario, the only way to communicate back to the scheduler
about the success or failure of a job is through return codes. A
return code is a number that is returned to a scheduler by the process
to indicate the result of the run. In the simplest case, 0 is
success and 1 is failure. However, there may be more complex
scenarios, such as “If job A returns 4, kick off job B, and, if it returns 5, kick
off job C.” This type of behavior is configured at the scheduler level,
but it is important that a processing framework such as Spring Batch
provide a way to return a numeric representation of the exit code
for a particular batch job. In Spring Batch, this is encapsulated
within an ExitStatus
, which is covered in more
detail in Chapter 5. For the purposes of discussing exit codes, the
only important thing to know is that an
ExitStatus
has an exit code property that is
set by the framework (or the developer) and is returned as part of the
JobExecution
returned from the
JobLauncher
. The
CommandLineJobRunner
converts this string value
to a number by using the ExitCodeMapper
interface:
public interface ExitCodeMapper {
public int intValue(String exitCode);
}
The essential contract of an
ExitCodeMapper
is that, given a string exit
code, a number representation will be returned. The default
implementation used by the job runner is the SimpleJvmExitCodeMapper
that returns 0 for completion, 1 for generic errors, and 2 for any job
runner errors such as not being able to find a
Job
in the provided context. If anything more
complex than the three values above is needed, a custom
implementation of the ExitCodeMapper
interface
must be supplied. Because the
CommandLineJobRunner
is the class that creates
an ApplicationContext
and, thus, cannot be
'wired together', any values that need to be overwritten must be
autowired. This means that if an implementation of
ExitCodeMapper
is found within the BeanFactory
,
it is injected into the runner after the context is created. All
that needs to be done to provide your own
ExitCodeMapper
is to declare the implementation
as a root level bean and ensure that it is part of the
ApplicationContext
that is loaded by the
runner.
Running Jobs from within a Web Container
Historically, offline processing (such as batch jobs) has been
launched from the command-line, as described earlier. However, there are
many cases where launching from an HttpRequest
is
a better option. Many such use cases include reporting, ad-hoc job
running, and web application support. Because a batch job (by definition)
is long running, the most important concern is to launch the
job asynchronously:
The controller in this case is a Spring MVC controller. See the
Spring Framework Reference Guide for more about Spring MVC.
The controller launches a Job
by using a
JobLauncher
that has been configured to launch
asynchronously, which
immediately returns a JobExecution
. The
Job
is likely still running. However, this
nonblocking behavior lets the controller return immediately, which
is required when handling an HttpRequest
. The following listing
shows an example:
@Controller
public class JobLauncherController {
@Autowired
JobLauncher jobLauncher;
@Autowired
Job job;
@RequestMapping("/jobLauncher.html")
public void handle() throws Exception{
jobLauncher.run(job, new JobParameters());
}
}
Advanced Metadata Usage
So far, both the JobLauncher
and JobRepository
interfaces have been
discussed. Together, they represent the simple launching of a job and basic
CRUD operations of batch domain objects:
A JobLauncher
uses the
JobRepository
to create new
JobExecution
objects and run them.
Job
and Step
implementations
later use the same JobRepository
for basic updates
of the same executions during the running of a Job
.
The basic operations suffice for simple scenarios. However, in a large batch
environment with hundreds of batch jobs and complex scheduling
requirements, more advanced access to the metadata is required:
The JobExplorer
and
JobOperator
interfaces, which are discussed
in the coming sections, add additional functionality for querying and controlling the metadata.
Querying the Repository
The most basic need before any advanced features is the ability to
query the repository for existing executions. This functionality is
provided by the JobExplorer
interface:
public interface JobExplorer {
List<JobInstance> getJobInstances(String jobName, int start, int count);
JobExecution getJobExecution(Long executionId);
StepExecution getStepExecution(Long jobExecutionId, Long stepExecutionId);
JobInstance getJobInstance(Long instanceId);
List<JobExecution> getJobExecutions(JobInstance jobInstance);
Set<JobExecution> findRunningJobExecutions(String jobName);
}
As is evident from its method signatures, JobExplorer
is a read-only version of
the JobRepository
, and, like the JobRepository
, it can be easily configured by using a
factory bean.
The following example shows how to configure a JobExplorer
in XML:
<bean id="jobExplorer" class="org.spr...JobExplorerFactoryBean"
p:dataSource-ref="dataSource" />
The following example shows how to configure a JobExplorer
in Java:
...
// This would reside in your DefaultBatchConfiguration extension
@Bean
public JobExplorer jobExplorer() throws Exception {
JobExplorerFactoryBean factoryBean = new JobExplorerFactoryBean();
factoryBean.setDataSource(this.dataSource);
return factoryBean.getObject();
}
...
Earlier in this chapter, we noted that you can modify the table prefix
of the JobRepository
to allow for different versions or schemas. Because
the JobExplorer
works with the same tables, it also needs the ability to set a prefix.
The following example shows how to set the table prefix for a JobExplorer
in XML:
<bean id="jobExplorer" class="org.spr...JobExplorerFactoryBean"
p:tablePrefix="SYSTEM."/>
The following example shows how to set the table prefix for a JobExplorer
in Java:
...
// This would reside in your DefaultBatchConfiguration extension
@Bean
public JobExplorer jobExplorer() throws Exception {
JobExplorerFactoryBean factoryBean = new JobExplorerFactoryBean();
factoryBean.setDataSource(this.dataSource);
factoryBean.setTablePrefix("SYSTEM.");
return factoryBean.getObject();
}
...
JobRegistry
A JobRegistry
(and its parent interface, JobLocator
) is not mandatory, but it can be
useful if you want to keep track of which jobs are available in the context. It is also
useful for collecting jobs centrally in an application context when they have been created
elsewhere (for example, in child contexts). You can also use custom JobRegistry
implementations
to manipulate the names and other properties of the jobs that are registered.
There is only one implementation provided by the framework and this is based on a simple
map from job name to job instance.
The following example shows how to include a JobRegistry
for a job defined in XML:
<bean id="jobRegistry" class="org.springframework.batch.core.configuration.support.MapJobRegistry" />
When using @EnableBatchProcessing
, a JobRegistry
is provided for you.
The following example shows how to configure your own JobRegistry
:
...
// This is already provided via the @EnableBatchProcessing but can be customized via
// overriding the bean in the DefaultBatchConfiguration
@Override
@Bean
public JobRegistry jobRegistry() throws Exception {
return new MapJobRegistry();
}
...
You can populate a JobRegistry
in either of two ways: by using
a bean post processor or by using a registrar lifecycle component. The coming
sections describe these two mechanisms.
JobRegistryBeanPostProcessor
This is a bean post-processor that can register all jobs as they are created.
The following example shows how to include the JobRegistryBeanPostProcessor
for a job
defined in XML:
<bean id="jobRegistryBeanPostProcessor" class="org.spr...JobRegistryBeanPostProcessor">
<property name="jobRegistry" ref="jobRegistry"/>
</bean>
The following example shows how to include the JobRegistryBeanPostProcessor
for a job
defined in Java:
@Bean
public JobRegistryBeanPostProcessor jobRegistryBeanPostProcessor(JobRegistry jobRegistry) {
JobRegistryBeanPostProcessor postProcessor = new JobRegistryBeanPostProcessor();
postProcessor.setJobRegistry(jobRegistry);
return postProcessor;
}
Although it is not strictly necessary, the post-processor in the
example has been given an id
so that it can be included in child
contexts (for example, as a parent bean definition) and cause all jobs created
there to also be registered automatically.
AutomaticJobRegistrar
This is a lifecycle component that creates child contexts and registers jobs from those
contexts as they are created. One advantage of doing this is that, while the job names in
the child contexts still have to be globally unique in the registry, their dependencies
can have “natural” names. So, for example, you can create a set of XML configuration files
that each have only one Job but that all have different definitions of an ItemReader
with the
same bean name, such as reader
. If all those files were imported into the same context,
the reader definitions would clash and override one another, but, with the automatic
registrar, this is avoided. This makes it easier to integrate jobs that have been contributed from
separate modules of an application.
The following example shows how to include the AutomaticJobRegistrar
for a job defined
in XML:
<bean class="org.spr...AutomaticJobRegistrar">
<property name="applicationContextFactories">
<bean class="org.spr...ClasspathXmlApplicationContextsFactoryBean">
<property name="resources" value="classpath*:/config/job*.xml" />
</bean>
</property>
<property name="jobLoader">
<bean class="org.spr...DefaultJobLoader">
<property name="jobRegistry" ref="jobRegistry" />
</bean>
</property>
</bean>
The following example shows how to include the AutomaticJobRegistrar
for a job defined
in Java:
@Bean
public AutomaticJobRegistrar registrar() {
AutomaticJobRegistrar registrar = new AutomaticJobRegistrar();
registrar.setJobLoader(jobLoader());
registrar.setApplicationContextFactories(applicationContextFactories());
registrar.afterPropertiesSet();
return registrar;
}
The registrar has two mandatory properties: an array of
ApplicationContextFactory
(created from a
convenient factory bean in the preceding example) and a
JobLoader
. The JobLoader
is responsible for managing the lifecycle of the child contexts and
registering jobs in the JobRegistry
.
The ApplicationContextFactory
is
responsible for creating the child context. The most common usage
is (as in the preceding example) to use a
ClassPathXmlApplicationContextFactory
. One of
the features of this factory is that, by default, it copies some of the
configuration down from the parent context to the child. So, for
instance, you need not redefine the
PropertyPlaceholderConfigurer
or AOP
configuration in the child, provided it should be the same as the
parent.
You can use AutomaticJobRegistrar
in
conjunction with a JobRegistryBeanPostProcessor
(as long as you also use DefaultJobLoader
).
For instance, this might be desirable if there are jobs
defined in the main parent context as well as in the child
locations.
JobOperator
As previously discussed, the JobRepository
provides CRUD operations on the meta-data, and the
JobExplorer
provides read-only operations on the
metadata. However, those operations are most useful when used together
to perform common monitoring tasks such as stopping, restarting, or
summarizing a Job, as is commonly done by batch operators. Spring Batch
provides these types of operations in the
JobOperator
interface:
public interface JobOperator {
List<Long> getExecutions(long instanceId) throws NoSuchJobInstanceException;
List<Long> getJobInstances(String jobName, int start, int count)
throws NoSuchJobException;
Set<Long> getRunningExecutions(String jobName) throws NoSuchJobException;
String getParameters(long executionId) throws NoSuchJobExecutionException;
Long start(String jobName, String parameters)
throws NoSuchJobException, JobInstanceAlreadyExistsException;
Long restart(long executionId)
throws JobInstanceAlreadyCompleteException, NoSuchJobExecutionException,
NoSuchJobException, JobRestartException;
Long startNextInstance(String jobName)
throws NoSuchJobException, JobParametersNotFoundException, JobRestartException,
JobExecutionAlreadyRunningException, JobInstanceAlreadyCompleteException;
boolean stop(long executionId)
throws NoSuchJobExecutionException, JobExecutionNotRunningException;
String getSummary(long executionId) throws NoSuchJobExecutionException;
Map<Long, String> getStepExecutionSummaries(long executionId)
throws NoSuchJobExecutionException;
Set<String> getJobNames();
}
The preceding operations represent methods from many different interfaces, such as
JobLauncher
, JobRepository
, JobExplorer
, and JobRegistry
. For this reason, the
provided implementation of JobOperator
(SimpleJobOperator
) has many dependencies.
The following example shows a typical bean definition for SimpleJobOperator
in XML:
<bean id="jobOperator" class="org.spr...SimpleJobOperator">
<property name="jobExplorer">
<bean class="org.spr...JobExplorerFactoryBean">
<property name="dataSource" ref="dataSource" />
</bean>
</property>
<property name="jobRepository" ref="jobRepository" />
<property name="jobRegistry" ref="jobRegistry" />
<property name="jobLauncher" ref="jobLauncher" />
</bean>
The following example shows a typical bean definition for SimpleJobOperator
in Java:
/**
* All injected dependencies for this bean are provided by the @EnableBatchProcessing
* infrastructure out of the box.
*/
@Bean
public SimpleJobOperator jobOperator(JobExplorer jobExplorer,
JobRepository jobRepository,
JobRegistry jobRegistry,
JobLauncher jobLauncher) {
SimpleJobOperator jobOperator = new SimpleJobOperator();
jobOperator.setJobExplorer(jobExplorer);
jobOperator.setJobRepository(jobRepository);
jobOperator.setJobRegistry(jobRegistry);
jobOperator.setJobLauncher(jobLauncher);
return jobOperator;
}
As of version 5.0, the @EnableBatchProcessing
annotation automatically registers a job operator bean
in the application context.
If you set the table prefix on the job repository, do not forget to set it on the job explorer as well. |
JobParametersIncrementer
Most of the methods on JobOperator
are
self-explanatory, and you can find more detailed explanations in the
Javadoc of the interface. However, the
startNextInstance
method is worth noting. This
method always starts a new instance of a Job
.
This can be extremely useful if there are serious issues in a
JobExecution
and the Job
needs to be started over again from the beginning. Unlike
JobLauncher
(which requires a new
JobParameters
object that triggers a new
JobInstance
), if the parameters are different from
any previous set of parameters, the
startNextInstance
method uses the
JobParametersIncrementer
tied to the
Job
to force the Job
to a
new instance:
public interface JobParametersIncrementer {
JobParameters getNext(JobParameters parameters);
}
The contract of JobParametersIncrementer
is
that, given a JobParameters
object, it returns the “next” JobParameters
object by incrementing any necessary values it may contain. This
strategy is useful because the framework has no way of knowing what
changes to the JobParameters
make it the “next”
instance. For example, if the only value in
JobParameters
is a date and the next instance
should be created, should that value be incremented by one day or one
week (if the job is weekly, for instance)? The same can be said for any
numerical values that help to identify the Job
,
as the following example shows:
public class SampleIncrementer implements JobParametersIncrementer {
public JobParameters getNext(JobParameters parameters) {
if (parameters==null || parameters.isEmpty()) {
return new JobParametersBuilder().addLong("run.id", 1L).toJobParameters();
}
long id = parameters.getLong("run.id",1L) + 1;
return new JobParametersBuilder().addLong("run.id", id).toJobParameters();
}
}
In this example, the value with a key of run.id
is used to
discriminate between JobInstances
. If the
JobParameters
passed in is null, it can be
assumed that the Job
has never been run before
and, thus, its initial state can be returned. However, if not, the old
value is obtained, incremented by one, and returned.
For jobs defined in XML, you can associate an incrementer with a Job
through the
incrementer
attribute in the namespace, as follows:
<job id="footballJob" incrementer="sampleIncrementer">
...
</job>
For jobs defined in Java, you can associate an incrementer with a Job
through the
incrementer
method provided in the builders, as follows:
@Bean
public Job footballJob(JobRepository jobRepository) {
return new JobBuilder("footballJob", jobRepository)
.incrementer(sampleIncrementer())
...
.build();
}
Stopping a Job
One of the most common use cases of
JobOperator
is gracefully stopping a
Job:
Set<Long> executions = jobOperator.getRunningExecutions("sampleJob");
jobOperator.stop(executions.iterator().next());
The shutdown is not immediate, since there is no way to force
immediate shutdown, especially if the execution is currently in
developer code that the framework has no control over, such as a
business service. However, as soon as control is returned back to the
framework, it sets the status of the current
StepExecution
to
BatchStatus.STOPPED
, saves it, and does the same
for the JobExecution
before finishing.
Aborting a Job
A job execution that is FAILED
can be
restarted (if the Job
is restartable). A job execution whose status is
ABANDONED
cannot be restarted by the framework.
The ABANDONED
status is also used in step
executions to mark them as skippable in a restarted job execution. If a
job is running and encounters a step that has been marked
ABANDONED
in the previous failed job execution, it
moves on to the next step (as determined by the job flow definition
and the step execution exit status).
If the process died (kill -9
or server
failure), the job is, of course, not running, but the JobRepository
has
no way of knowing because no one told it before the process died. You
have to tell it manually that you know that the execution either failed
or should be considered aborted (change its status to
FAILED
or ABANDONED
). This is
a business decision, and there is no way to automate it. Change the
status to FAILED
only if it is restartable and you know that the restart data is valid.