Milvus
Milvus is an open-source vector database that has garnered significant attention in the fields of data science and machine learning. One of its standout features lies in its robust support for vector indexing and querying. Milvus employs state-of-the-art, cutting-edge algorithms to accelerate the search process, making it exceptionally efficient at retrieving similar vectors, even when handling extensive datasets.
Prerequisites
-
A running Milvus instance. The following options are available:
-
Milvus Standalone: Docker, Operator, Helm,DEB/RPM, Docker Compose.
-
Milvus Cluster: Operator, Helm.
-
-
If required, an API key for the EmbeddingModel to generate the embeddings stored by the
MilvusVectorStore
.
Dependencies
Then add the Milvus VectorStore boot starter dependency to your project:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-milvus-store-spring-boot-starter</artifactId>
</dependency>
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-milvus-store-spring-boot-starter'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. Refer to the Repositories section to add Milestone and/or Snapshot Repositories to your build file. |
The vector store implementation can initialize the requisite schema for you, but you must opt-in by specifying the initializeSchema
boolean in the appropriate constructor or by setting …initialize-schema=true
in the application.properties
file.
this is a breaking change! In earlier versions of Spring AI, this schema initialization happened by default. |
The Vector Store, also requires an EmbeddingModel
instance to calculate embeddings for the documents.
You can pick one of the available EmbeddingModel Implementations.
To connect to and configure the MilvusVectorStore
, you need to provide access details for your instance.
A simple configuration can either be provided via Spring Boot’s application.yml
spring: ai: vectorstore: milvus: client: host: "localhost" port: 19530 username: "root" password: "milvus" databaseName: "default" collectionName: "vector_store" embeddingDimension: 1536 indexType: IVF_FLAT metricType: COSINE
Check the list of configuration parameters to learn about the default values and configuration options. |
Now you can Auto-wire the Milvus Vector Store in your application and use it
@Autowired VectorStore vectorStore;
// ...
List <Document> documents = List.of(
new Document("Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!", Map.of("meta1", "meta1")),
new Document("The World is Big and Salvation Lurks Around the Corner"),
new Document("You walk forward facing the past and you turn back toward the future.", Map.of("meta2", "meta2")));
// Add the documents to Milvus Vector Store
vectorStore.add(documents);
// Retrieve documents similar to a query
List<Document> results = this.vectorStore.similaritySearch(SearchRequest.query("Spring").withTopK(5));
Manual Configuration
Instead of using the Spring Boot auto-configuration, you can manually configure the MilvusVectorStore
.
To add the following dependencies to your project:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-milvus-store</artifactId>
</dependency>
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
To configure MilvusVectorStore in your application, you can use the following setup:
@Bean
public VectorStore vectorStore(MilvusServiceClient milvusClient, EmbeddingModel embeddingModel) {
MilvusVectorStoreConfig config = MilvusVectorStoreConfig.builder()
.withCollectionName("test_vector_store")
.withDatabaseName("default")
.withIndexType(IndexType.IVF_FLAT)
.withMetricType(MetricType.COSINE)
.build();
return new MilvusVectorStore(milvusClient, embeddingModel, config);
}
@Bean
public MilvusServiceClient milvusClient() {
return new MilvusServiceClient(ConnectParam.newBuilder()
.withAuthorization("minioadmin", "minioadmin")
.withUri(milvusContainer.getEndpoint())
.build());
}
Metadata filtering
You can leverage the generic, portable metadata filters with the Milvus store.
For example, you can use either the text expression language:
vectorStore.similaritySearch(
SearchRequest.defaults()
.withQuery("The World")
.withTopK(TOP_K)
.withSimilarityThreshold(SIMILARITY_THRESHOLD)
.withFilterExpression("author in ['john', 'jill'] && article_type == 'blog'"));
or programmatically using the Filter.Expression
DSL:
FilterExpressionBuilder b = new FilterExpressionBuilder();
vectorStore.similaritySearch(SearchRequest.defaults()
.withQuery("The World")
.withTopK(TOP_K)
.withSimilarityThreshold(SIMILARITY_THRESHOLD)
.withFilterExpression(b.and(
b.in("author","john", "jill"),
b.eq("article_type", "blog")).build()));
These filter expressions are converted into the equivalent Milvus filters. |
Milvus VectorStore properties
You can use the following properties in your Spring Boot configuration to customize the Milvus vector store.
Property | Description | Default value |
---|---|---|
spring.ai.vectorstore.milvus.database-name |
The name of the Milvus database to use. |
default |
spring.ai.vectorstore.milvus.collection-name |
Milvus collection name to store the vectors |
vector_store |
spring.ai.vectorstore.milvus.initialize-schema |
whether to initialize Milvus' backend |
false |
spring.ai.vectorstore.milvus.embedding-dimension |
The dimension of the vectors to be stored in the Milvus collection. |
1536 |
spring.ai.vectorstore.milvus.index-type |
The type of the index to be created for the Milvus collection. |
IVF_FLAT |
spring.ai.vectorstore.milvus.metric-type |
The metric type to be used for the Milvus collection. |
COSINE |
spring.ai.vectorstore.milvus.index-parameters |
The index parameters to be used for the Milvus collection. |
{"nlist":1024} |
spring.ai.vectorstore.milvus.id-field-name |
The ID field name for the collection |
doc_id |
spring.ai.vectorstore.milvus.is-auto-id |
Boolean flag to indicate if the auto-id is used for the ID field |
false |
spring.ai.vectorstore.milvus.content-field-name |
The content field name for the collection |
content |
spring.ai.vectorstore.milvus.metadata-field-name |
The metadata field name for the collection |
metadata |
spring.ai.vectorstore.milvus.embedding-field-name |
The embedding field name for the collection |
embedding |
spring.ai.vectorstore.milvus.client.host |
The name or address of the host. |
localhost |
spring.ai.vectorstore.milvus.client.port |
The connection port. |
19530 |
spring.ai.vectorstore.milvus.client.uri |
The uri of Milvus instance |
- |
spring.ai.vectorstore.milvus.client.token |
Token serving as the key for identification and authentication purposes. |
- |
spring.ai.vectorstore.milvus.client.connect-timeout-ms |
Connection timeout value of client channel. The timeout value must be greater than zero . |
10000 |
spring.ai.vectorstore.milvus.client.keep-alive-time-ms |
Keep-alive time value of client channel. The keep-alive value must be greater than zero. |
55000 |
spring.ai.vectorstore.milvus.client.keep-alive-timeout-ms |
The keep-alive timeout value of client channel. The timeout value must be greater than zero. |
20000 |
spring.ai.vectorstore.milvus.client.rpc-deadline-ms |
Deadline for how long you are willing to wait for a reply from the server. With a deadline setting, the client will wait when encounter fast RPC fail caused by network fluctuations. The deadline value must be larger than or equal to zero. |
0 |
spring.ai.vectorstore.milvus.client.client-key-path |
The client.key path for tls two-way authentication, only takes effect when "secure" is true |
- |
spring.ai.vectorstore.milvus.client.client-pem-path |
The client.pem path for tls two-way authentication, only takes effect when "secure" is true |
- |
spring.ai.vectorstore.milvus.client.ca-pem-path |
The ca.pem path for tls two-way authentication, only takes effect when "secure" is true |
- |
spring.ai.vectorstore.milvus.client.server-pem-path |
server.pem path for tls one-way authentication, only takes effect when "secure" is true. |
- |
spring.ai.vectorstore.milvus.client.server-name |
Sets the target name override for SSL host name checking, only takes effect when "secure" is True. Note: this value is passed to grpc.ssl_target_name_override |
- |
spring.ai.vectorstore.milvus.client.secure |
Secure the authorization for this connection, set to True to enable TLS. |
false |
spring.ai.vectorstore.milvus.client.idle-timeout-ms |
Idle timeout value of client channel. The timeout value must be larger than zero. |
24h |
spring.ai.vectorstore.milvus.client.username |
The username and password for this connection. |
root |
spring.ai.vectorstore.milvus.client.password |
The password for this connection. |
milvus |
Starting Milvus Store
From within the src/test/resources/
folder run:
docker-compose up
To clean the environment:
docker-compose down; rm -Rf ./volumes
Then connect to the vector store on http://localhost:19530 or for management http://localhost:9001 (user: minioadmin
, pass: minioadmin
)
Troubleshooting
If Docker complains about resources, then execute:
docker system prune --all --force --volumes