This version is still in development and is not considered stable yet. For the latest snapshot version, please use Spring AI 1.0.0-SNAPSHOT!spring-doc.cn

SAP HANA Cloud

Prerequisites

Auto-configuration

Spring AI provides Spring Boot auto-configuration for the SAP Hana Vector Store. To enable it, add the following dependency to your project’s Maven pom.xml file:spring-doc.cn

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-hanadb-store-spring-boot-starter</artifactId>
</dependency>

or to your Gradle build.gradle build file.spring-doc.cn

dependencies {
    implementation 'org.springframework.ai:spring-ai-hanadb-store-spring-boot-starter'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file.

Please have a look at the list of configuration parameters for the vector store to learn about the default values and configuration options.spring-doc.cn

Refer to the Repositories section to add Milestone and/or Snapshot Repositories to your build file.

Additionally, you will need a configured EmbeddingModel bean. Refer to the EmbeddingModel section for more information.spring-doc.cn

HanaCloudVectorStore properties

You can use the following properties in your Spring Boot configuration to customize the SAP Hana vector store. It uses spring.datasource. properties to configure the Hana datasource and the spring.ai.vectorstore.hanadb. properties to configure the Hana vector store.spring-doc.cn

Property Description Default value

spring.datasource.driver-class-namespring-doc.cn

Driver class namespring-doc.cn

com.sap.db.jdbc.Driverspring-doc.cn

spring.datasource.urlspring-doc.cn

Hana Datasource URLspring-doc.cn

-spring-doc.cn

spring.datasource.usernamespring-doc.cn

Hana datasource usernamespring-doc.cn

-spring-doc.cn

spring.datasource.passwordspring-doc.cn

Hana datasource passwordspring-doc.cn

-spring-doc.cn

spring.ai.vectorstore.hanadb.top-kspring-doc.cn

TODOspring-doc.cn

-spring-doc.cn

spring.ai.vectorstore.hanadb.table-namespring-doc.cn

TODOspring-doc.cn

-spring-doc.cn

spring.ai.vectorstore.hanadb.initialize-schemaspring-doc.cn

whether to initialize the required schemaspring-doc.cn

falsespring-doc.cn

Build a Sample RAG application

Shows how to setup a project that uses SAP Hana Cloud as the vector DB and leverage OpenAI to implement RAG patternspring-doc.cn

CREATE TABLE CRICKET_WORLD_CUP (
    _ID VARCHAR2(255) PRIMARY KEY,
    CONTENT CLOB,
    EMBEDDING REAL_VECTOR(1536)
)

You may set the property spring-ai-version as <spring-ai-version>1.0.0-SNAPSHOT</spring-ai-version>:spring-doc.cn

<dependencyManagement>
    <dependencies>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-bom</artifactId>
            <version>${spring-ai-version}</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-pdf-document-reader</artifactId>
</dependency>

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-hanadb-store-spring-boot-starter</artifactId>
</dependency>

<dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <version>1.18.30</version>
    <scope>provided</scope>
</dependency>
  • Add the following properties in application.properties file:spring-doc.cn

spring.ai.openai.api-key=${OPENAI_API_KEY}
spring.ai.openai.embedding.options.model=text-embedding-ada-002

spring.datasource.driver-class-name=com.sap.db.jdbc.Driver
spring.datasource.url=${HANA_DATASOURCE_URL}
spring.datasource.username=${HANA_DATASOURCE_USERNAME}
spring.datasource.password=${HANA_DATASOURCE_PASSWORD}

spring.ai.vectorstore.hanadb.tableName=CRICKET_WORLD_CUP
spring.ai.vectorstore.hanadb.topK=3

Create an Entity class named CricketWorldCup that extends from HanaVectorEntity:

package com.interviewpedia.spring.ai.hana;

import jakarta.persistence.Column;
import jakarta.persistence.Entity;
import jakarta.persistence.Table;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.extern.jackson.Jacksonized;
import org.springframework.ai.vectorstore.HanaVectorEntity;

@Entity
@Table(name = "CRICKET_WORLD_CUP")
@Data
@Jacksonized
@NoArgsConstructor
public class CricketWorldCup extends HanaVectorEntity {
    @Column(name = "content")
    private String content;
}
  • Create a Repository named CricketWorldCupRepository that implements HanaVectorRepository interface:spring-doc.cn

package com.interviewpedia.spring.ai.hana;

import jakarta.persistence.EntityManager;
import jakarta.persistence.PersistenceContext;
import jakarta.transaction.Transactional;
import org.springframework.ai.vectorstore.HanaVectorRepository;
import org.springframework.stereotype.Repository;

import java.util.List;

@Repository
public class CricketWorldCupRepository implements HanaVectorRepository<CricketWorldCup> {
    @PersistenceContext
    private EntityManager entityManager;

    @Override
    @Transactional
    public void save(String tableName, String id, String embedding, String content) {
        String sql = String.format("""
                INSERT INTO %s (_ID, EMBEDDING, CONTENT)
                VALUES(:_id, TO_REAL_VECTOR(:embedding), :content)
                """, tableName);

		this.entityManager.createNativeQuery(sql)
                .setParameter("_id", id)
                .setParameter("embedding", embedding)
                .setParameter("content", content)
                .executeUpdate();
    }

    @Override
    @Transactional
    public int deleteEmbeddingsById(String tableName, List<String> idList) {
        String sql = String.format("""
                DELETE FROM %s WHERE _ID IN (:ids)
                """, tableName);

        return this.entityManager.createNativeQuery(sql)
                .setParameter("ids", idList)
                .executeUpdate();
    }

    @Override
    @Transactional
    public int deleteAllEmbeddings(String tableName) {
        String sql = String.format("""
                DELETE FROM %s
                """, tableName);

        return this.entityManager.createNativeQuery(sql).executeUpdate();
    }

    @Override
    public List<CricketWorldCup> cosineSimilaritySearch(String tableName, int topK, String queryEmbedding) {
        String sql = String.format("""
                SELECT TOP :topK * FROM %s
                ORDER BY COSINE_SIMILARITY(EMBEDDING, TO_REAL_VECTOR(:queryEmbedding)) DESC
                """, tableName);

        return this.entityManager.createNativeQuery(sql, CricketWorldCup.class)
                .setParameter("topK", topK)
                .setParameter("queryEmbedding", queryEmbedding)
                .getResultList();
    }
}
  • Now, create a REST Controller class CricketWorldCupHanaController, and autowire ChatModel and VectorStore as dependencies In this controller class, create the following REST endpoints:spring-doc.cn

    • /ai/hana-vector-store/cricket-world-cup/purge-embeddings - to purge all the embeddings from the Vector Storespring-doc.cn

    • /ai/hana-vector-store/cricket-world-cup/upload - to upload the Cricket_World_Cup.pdf so that its data gets stored in SAP Hana Cloud Vector DB as embeddingsspring-doc.cn

    • /ai/hana-vector-store/cricket-world-cup - to implement RAG using Cosine_Similarity in SAP Hana DBspring-doc.cn

package com.interviewpedia.spring.ai.hana;

import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.chat.prompt.SystemPromptTemplate;
import org.springframework.ai.document.Document;
import org.springframework.ai.reader.pdf.PagePdfDocumentReader;
import org.springframework.ai.transformer.splitter.TokenTextSplitter;
import org.springframework.ai.vectorstore.HanaCloudVectorStore;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.io.Resource;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.multipart.MultipartFile;

import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.function.Function;
import java.util.function.Supplier;
import java.util.stream.Collectors;

@RestController
@Slf4j
public class CricketWorldCupHanaController {
    private final VectorStore hanaCloudVectorStore;
    private final ChatModel chatModel;

    @Autowired
    public CricketWorldCupHanaController(ChatModel chatModel, VectorStore hanaCloudVectorStore) {
        this.chatModel = chatModel;
        this.hanaCloudVectorStore = hanaCloudVectorStore;
    }

    @PostMapping("/ai/hana-vector-store/cricket-world-cup/purge-embeddings")
    public ResponseEntity<String> purgeEmbeddings() {
        int deleteCount = ((HanaCloudVectorStore) this.hanaCloudVectorStore).purgeEmbeddings();
        log.info("{} embeddings purged from CRICKET_WORLD_CUP table in Hana DB", deleteCount);
        return ResponseEntity.ok().body(String.format("%d embeddings purged from CRICKET_WORLD_CUP table in Hana DB", deleteCount));
    }

    @PostMapping("/ai/hana-vector-store/cricket-world-cup/upload")
    public ResponseEntity<String> handleFileUpload(@RequestParam("pdf") MultipartFile file) throws IOException {
        Resource pdf = file.getResource();
        Supplier<List<Document>> reader = new PagePdfDocumentReader(pdf);
        Function<List<Document>, List<Document>> splitter = new TokenTextSplitter();
        List<Document> documents = splitter.apply(reader.get());
        log.info("{} documents created from pdf file: {}", documents.size(), pdf.getFilename());
		this.hanaCloudVectorStore.accept(documents);
        return ResponseEntity.ok().body(String.format("%d documents created from pdf file: %s",
                documents.size(), pdf.getFilename()));
    }

    @GetMapping("/ai/hana-vector-store/cricket-world-cup")
    public Map<String, String> hanaVectorStoreSearch(@RequestParam(value = "message") String message) {
        var documents = this.hanaCloudVectorStore.similaritySearch(message);
        var inlined = documents.stream().map(Document::getContent).collect(Collectors.joining(System.lineSeparator()));
        var similarDocsMessage = new SystemPromptTemplate("Based on the following: {documents}")
                .createMessage(Map.of("documents", inlined));

        var userMessage = new UserMessage(message);
        Prompt prompt = new Prompt(List.of(similarDocsMessage, userMessage));
        String generation = this.chatModel.call(prompt).getResult().getOutput().getContent();
        log.info("Generation: {}", generation);
        return Map.of("generation", generation);
    }
}

Go to wikipedia and download Cricket World Cup page as a PDF file.spring-doc.cn

wikipedia

Upload this PDF file using the file-upload REST endpoint that we created in the previous step.spring-doc.cn