This version is still in development and is not considered stable yet. For the latest snapshot version, please use Spring AI 1.0.0-SNAPSHOT! |
Bedrock Converse API
Amazon Bedrock Converse API provides a unified interface for conversational AI models with enhanced capabilities including function/tool calling, multimodal inputs, and streaming responses.
The Bedrock Converse API has the following high-level features:
-
Tool/Function Calling: Support for function definitions and tool use during conversations
-
Multimodal Input: Ability to process both text and image inputs in conversations
-
Streaming Support: Real-time streaming of model responses
-
System Messages: Support for system-level instructions and context setting
The Bedrock Converse API provides a unified interface across multiple model providers while handling AWS-specific authentication and infrastructure concerns. |
Following the Bedrock recommendations, Spring AI is transitioning to using Amazon Bedrock’s Converse API for all chat conversation implementations in Spring AI.
While the existing
The Converse API does not support embedding operations, so these will remain in the current API and the embedding model functionality in the existing |
Prerequisites
Refer to Getting started with Amazon Bedrock for setting up API access
-
Obtain AWS credentials: If you don’t have an AWS account and AWS CLI configured yet, this video guide can help you configure it: AWS CLI & SDK Setup in Less Than 4 Minutes!. You should be able to obtain your access and security keys.
-
Enable the Models to use: Go to Amazon Bedrock and from the Model Access menu on the left, configure access to the models you are going to use.
Auto-configuration
Add the spring-ai-bedrock-converse-spring-boot-starter
dependency to your project’s Maven pom.xml
or Gradle build.gradle
build files:
-
Maven
-
Gradle
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-bedrock-converse-spring-boot-starter</artifactId>
</dependency>
dependencies {
implementation 'org.springframework.ai:spring-ai-bedrock-converse-spring-boot-starter'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Chat Properties
The prefix spring.ai.bedrock.aws
is the property prefix to configure the connection to AWS Bedrock.
Property | Description | Default |
---|---|---|
spring.ai.bedrock.aws.region |
AWS region to use. |
us-east-1 |
spring.ai.bedrock.aws.timeout |
AWS timeout to use. |
5m |
spring.ai.bedrock.aws.access-key |
AWS access key. |
- |
spring.ai.bedrock.aws.secret-key |
AWS secret key. |
- |
spring.ai.bedrock.aws.session-token |
AWS session token for temporary credentials. |
- |
The prefix spring.ai.bedrock.converse.chat
is the property prefix that configures the chat model implementation for the Converse API.
Property | Description | Default |
---|---|---|
spring.ai.bedrock.converse.chat.enabled |
Enable Bedrock Converse chat model. |
true |
spring.ai.bedrock.converse.chat.options.model |
The model ID to use. You can use the Supported models and model features |
None. Select your modelId from the AWS Bedrock console. |
spring.ai.bedrock.converse.chat.options.temperature |
Controls the randomness of the output. Values can range over [0.0,1.0] |
0.8 |
spring.ai.bedrock.converse.chat.options.top-p |
The maximum cumulative probability of tokens to consider when sampling. |
AWS Bedrock default |
spring.ai.bedrock.converse.chat.options.top-k |
Number of token choices for generating the next token. |
AWS Bedrock default |
spring.ai.bedrock.converse.chat.options.max-tokens |
Maximum number of tokens in the generated response. |
500 |
Runtime Options
Use the portable ChatOptions
or FunctionCallingOptions
portable builders to create model configurations, such as temperature, maxToken, topP, etc.
On start-up, the default options can be configured with the BedrockConverseProxyChatModel(api, options)
constructor or the spring.ai.bedrock.converse.chat.options.*
properties.
At run-time you can override the default options by adding new, request specific, options to the Prompt
call:
var options = FunctionCallingOptions.builder()
.withModel("anthropic.claude-3-5-sonnet-20240620-v1:0")
.withTemperature(0.6)
.withMaxTokens(300)
.withFunctionCallbacks(List.of(FunctionCallback.builder()
.description("Get the weather in location. Return temperature in 36°F or 36°C format. Use multi-turn if needed.")
.function("getCurrentWeather", new WeatherService())
.inputType(WeatherService.Request.class)
.build()))
.build();
ChatResponse response = chatModel.call(new Prompt("What is current weather in Amsterdam?", options));
Tool/Function Calling
The Bedrock Converse API supports function calling capabilities, allowing models to use tools during conversations. Here’s an example of how to define and use functions:
@Bean
@Description("Get the weather in location. Return temperature in 36°F or 36°C format.")
public Function<Request, Response> weatherFunction() {
return new MockWeatherService();
}
String response = ChatClient.create(this.chatModel)
.prompt("What's the weather like in Boston?")
.function("weatherFunction")
.call()
.content();
Sample Controller
Create a new Spring Boot project and add the spring-ai-bedrock-converse-spring-boot-starter
to your dependencies.
Add an application.properties
file under src/main/resources
:
spring.ai.bedrock.aws.region=eu-central-1
spring.ai.bedrock.aws.timeout=10m
spring.ai.bedrock.aws.access-key=${AWS_ACCESS_KEY_ID}
spring.ai.bedrock.aws.secret-key=${AWS_SECRET_ACCESS_KEY}
# session token is only required for temporary credentials
spring.ai.bedrock.aws.session-token=${AWS_SESSION_TOKEN}
spring.ai.bedrock.converse.chat.options.temperature=0.8
spring.ai.bedrock.converse.chat.options.top-k=15
Here’s an example controller using the chat model:
@RestController
public class ChatController {
private final ChatClient chatClient;
@Autowired
public ChatController(ChatClient.Builder builder) {
this.chatClient = builder.build();
}
@GetMapping("/ai/generate")
public Map generate(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
return Map.of("generation", this.chatClient.prompt(message).call().content());
}
@GetMapping("/ai/generateStream")
public Flux<ChatResponse> generateStream(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
return this.chatClient.prompt(message).stream().content();
}
}