此版本仍在开发中,尚未被视为稳定版本。对于最新的稳定版本,请使用 Spring for Apache Kafka 3.3.0spring-doc.cn

快速浏览

先决条件:您必须安装并运行 Apache Kafka。 然后,你必须将 Spring for Apache Kafka () JAR 及其所有依赖项放在你的 Classpath 上。 最简单的方法是在构建工具中声明依赖项。spring-kafkaspring-doc.cn

如果您不使用 Spring Boot,请在项目中将 jar 声明为依赖项。spring-kafkaspring-doc.cn

<dependency>
  <groupId>org.springframework.kafka</groupId>
  <artifactId>spring-kafka</artifactId>
  <version>3.3.1-SNAPSHOT</version>
</dependency>
compile 'org.springframework.kafka:spring-kafka:3.3.1-SNAPSHOT'
使用 Spring Boot 时(并且您尚未使用 start.spring.io 创建项目),省略版本,Boot 将自动引入与您的 Boot 版本兼容的正确版本:
<dependency>
  <groupId>org.springframework.kafka</groupId>
  <artifactId>spring-kafka</artifactId>
</dependency>
implementation 'org.springframework.kafka:spring-kafka'

但是,最快的入门方法是使用 start.spring.io(或 Spring Tool Suits 和 Intellij IDEA 中的向导)并创建一个项目,选择“Spring for Apache Kafka”作为依赖项。spring-doc.cn

兼容性

此快速导览适用于以下版本:spring-doc.cn

开始

最简单的入门方法是使用 start.spring.io(或 Spring Tool Suits 和 Intellij IDEA 中的向导)并创建一个项目,选择“Spring for Apache Kafka”作为依赖项。 请参阅 Spring Boot 文档,以获取有关其对基础结构 bean 的固执己见的自动配置的更多信息。spring-doc.cn

下面是一个最小的使用者应用程序。spring-doc.cn

Spring Boot 使用者应用程序

应用
@SpringBootApplication
public class Application {

    public static void main(String[] args) {
        SpringApplication.run(Application.class, args);
    }

    @Bean
    public NewTopic topic() {
        return TopicBuilder.name("topic1")
                .partitions(10)
                .replicas(1)
                .build();
    }

    @KafkaListener(id = "myId", topics = "topic1")
    public void listen(String in) {
        System.out.println(in);
    }

}
@SpringBootApplication
class Application {

    @Bean
    fun topic() = NewTopic("topic1", 10, 1)

    @KafkaListener(id = "myId", topics = ["topic1"])
    fun listen(value: String?) {
        println(value)
    }

}

fun main(args: Array<String>) = runApplication<Application>(*args)
application.properties
spring.kafka.consumer.auto-offset-reset=earliest

该 Bean 导致在代理上创建主题;如果主题已存在,则不需要它。NewTopicspring-doc.cn

Spring Boot Producer 应用程序

应用
@SpringBootApplication
public class Application {

    public static void main(String[] args) {
        SpringApplication.run(Application.class, args);
    }

    @Bean
    public NewTopic topic() {
        return TopicBuilder.name("topic1")
                .partitions(10)
                .replicas(1)
                .build();
    }

    @Bean
    public ApplicationRunner runner(KafkaTemplate<String, String> template) {
        return args -> {
            template.send("topic1", "test");
        };
    }

}
@SpringBootApplication
class Application {

    @Bean
    fun topic() = NewTopic("topic1", 10, 1)

    @Bean
    fun runner(template: KafkaTemplate<String?, String?>) =
        ApplicationRunner { template.send("topic1", "test") }

    companion object {
        @JvmStatic
        fun main(args: Array<String>) = runApplication<Application>(*args)
    }

}

使用 Java 配置(无 Spring Boot)

Spring for Apache Kafka 旨在用于 Spring 应用程序上下文。 例如,如果你在 Spring 上下文之外自己创建侦听器容器,那么除非你满足容器实现的所有接口,否则并非所有函数都能正常工作。...Aware

下面是一个不使用 Spring Boot 的应用程序示例;它同时具有 a 和 。ConsumerProducerspring-doc.cn

不使用 Spring Boot
public class Sender {

    public static void main(String[] args) {
        AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext(Config.class);
        context.getBean(Sender.class).send("test", 42);
    }

    private final KafkaTemplate<Integer, String> template;

    public Sender(KafkaTemplate<Integer, String> template) {
        this.template = template;
    }

    public void send(String toSend, int key) {
        this.template.send("topic1", key, toSend);
    }

}

public class Listener {

    @KafkaListener(id = "listen1", topics = "topic1")
    public void listen1(String in) {
        System.out.println(in);
    }

}

@Configuration
@EnableKafka
public class Config {

    @Bean
    ConcurrentKafkaListenerContainerFactory<Integer, String>
                        kafkaListenerContainerFactory(ConsumerFactory<Integer, String> consumerFactory) {
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory =
                                new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory);
        return factory;
    }

    @Bean
    public ConsumerFactory<Integer, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerProps());
    }

    private Map<String, Object> consumerProps() {
        Map<String, Object> props = new HashMap<>();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        props.put(ConsumerConfig.GROUP_ID_CONFIG, "group");
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
        // ...
        return props;
    }

    @Bean
    public Sender sender(KafkaTemplate<Integer, String> template) {
        return new Sender(template);
    }

    @Bean
    public Listener listener() {
        return new Listener();
    }

    @Bean
    public ProducerFactory<Integer, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(senderProps());
    }

    private Map<String, Object> senderProps() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        //...
        return props;
    }

    @Bean
    public KafkaTemplate<Integer, String> kafkaTemplate(ProducerFactory<Integer, String> producerFactory) {
        return new KafkaTemplate<>(producerFactory);
    }

}
class Sender(private val template: KafkaTemplate<Int, String>) {

    fun send(toSend: String, key: Int) {
        template.send("topic1", key, toSend)
    }

}

class Listener {

    @KafkaListener(id = "listen1", topics = ["topic1"])
    fun listen1(`in`: String) {
        println(`in`)
    }

}

@Configuration
@EnableKafka
class Config {

    @Bean
    fun kafkaListenerContainerFactory(consumerFactory: ConsumerFactory<Int, String>) =
        ConcurrentKafkaListenerContainerFactory<Int, String>().also { it.consumerFactory = consumerFactory }


    @Bean
    fun consumerFactory() = DefaultKafkaConsumerFactory<Int, String>(consumerProps)

    val consumerProps = mapOf(
        ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
        ConsumerConfig.GROUP_ID_CONFIG to "group",
        ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG to IntegerDeserializer::class.java,
        ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG to StringDeserializer::class.java,
        ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to "earliest"
    )

    @Bean
    fun sender(template: KafkaTemplate<Int, String>) = Sender(template)

    @Bean
    fun listener() = Listener()

    @Bean
    fun producerFactory() = DefaultKafkaProducerFactory<Int, String>(senderProps)

    val senderProps = mapOf(
        ProducerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
        ProducerConfig.LINGER_MS_CONFIG to 10,
        ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG to IntegerSerializer::class.java,
        ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG to StringSerializer::class.java
    )

    @Bean
    fun kafkaTemplate(producerFactory: ProducerFactory<Int, String>) = KafkaTemplate(producerFactory)

}

如您所见,在不使用 Spring Boot 时,您必须定义多个基础结构 bean。spring-doc.cn